
Nucleon and Δ resonances in K Σ (1385)} photoproduction from nucleons

Y. Oh, C. M. Ko, and K. Nakayama¹

Department of Physics and Astronomy, University of Georgia, Athens, GA 30602

The reaction mechanisms for $\Sigma K(1385)$ photoproduction from the reaction $\gamma p \to K^+ \Sigma^0(1385)$ in the resonance energy region are investigated in a hadronic model [1]. Both contributions from N and Δ resonances of masses around 2 GeV as given in the Review of Particle Data Group and by the quark model predictions are included. The Lagrangians for describing the decays of these resonances into $K\Sigma(1385)$ are constructed with the coupling constants determined from the decay amplitudes predicted by a quark model. Comparing the resulting total cross section for the reaction $\gamma p \to K^+ \Sigma^0(1385)$ with the preliminary data from the Thomas Jefferson National Accelerator Facility, we find that the most important contributions are from the two-star rated resonances $\Delta(2000)$ F₃₅, $\Delta(1940)$ D₃₃, and N(2080) D₁₃, as well as the missing resonance N 3/2 (2095) predicted in the quark model as shown in Fig. 1. We have also predicted the differential cross section and photon asymmetry in this reaction.

Figure 1. Total cross sections for the $\gamma p \rightarrow K^+ \Sigma^0 (1385)$ reaction with various resonances.

[1] Y. Oh, C. M. Ko, and K. Nakayama, Phys. Rev. C 77, 045204 (2008).